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Motivation 

Stratified flow is a basic flow pattern in gas-liquid and liquid-liquid systems; 

It is frequently encountered in various important industrial processes (e.g., 

gas-condensate pipelines operate primarily in the stratified flow regime).  

 

 

Basic information for engineering applications:  

 Pressure gradient, holdup (in horizontal and inclined channels and pipes).  

 Region of existence (i.e., stability) 

Modeling Complexity- interaction between the phases, gravity effects, 

surface tension effects, waves, turbulence, non-unique solution for specified 

operational conditions….  

  



• Exact solutions - only for laminar flows. 

• Numerical solutions (CFD) 

• Mechanistic models: 1-D Two-Fluid Models. 

Exact solution for laminar flows are applicable for liquid-liquid systems and 

small diameter pipes. 

Exact solutions: useful as benchmark for numerical codes, for testing closure 

relations for the Two-Fluid models, starting point for rigorous stability 

analysis. 

 

What insight can be gained from the exact solutions that may 

improve the modeling of  the stratified flow characteristics and 

its  stability boundaries??  

  

Modeling  Approach 



2-D velocity profiles: u1(y,z), u2(y,z)  in the form of  Fourier Integrals:  

  1≡Heavy phase,  2 ≡Light  phase  
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Fully Developed Laminar Pipe  Flow (LPF)- Exact solution  

Boundary Conditions: 

• No-Slip condition at the pipe wall 

• Continuity of the velocities and tangential shear stress across the phases interface. 

Given the interface location  

(i.e. holdup and curvature - f*)  
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i
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Mechanistic Models – Two-Fluid model (TF)  
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Theory based closures for the shear stresses  
Modified Two-Fluid (MTF model, Ullmann & Brauner, IJMF, 2004, 2006) 
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Corrections for the  

Two-phase interactions 
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Co-current up flow: 

Significance of the 

F-interaction  factors 

in case of backflow  

2

22 1
2

1 1

1 2

22

1

1 4
1

2

1

i

U S
X S

U S S
F

U
X

U



 p





  
   

    
 

 
 

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

0 20 40 60 80 100 120

1/X
2
=Q11/Q22

F
-i

n
te

ra
ct

io
n

 f
a

ct
o

r

Fi

F1

F2

Y/X
2
=-100

1/2=0.1

1 1 1 1 1

1

2
f U U   

1F

0

0.2

0.4

0.6

0.8

1

-5 -3 -1 1 3 5

u/U2s

y
/D

Series3
Series6
Series1

Interface

1/X
2
=50

=0.437

backflow

backflow 



0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

-3 -2 -1 0 1 2 3 4 5
H

o
ld

u
p

q=Q1/Q2

1/2=0.1

f*p

Y=-5

TF(heavy)
MTF

LPF

TF(free)

TF(light)

0

0.5

1

1.5

2

2.5

-3 -2 -1 0 1 2 3 4 5

F
r
ic

ti
o

n
a

l 
P

r
e
ss

u
r
e
 G

r
a

d
ie

n
t,

 P
f2

q=Q1/Q2

H/L=0.1

f*p

Y=-5

TF(heavy)

MTF

LPF

TF(free)

TF(light)

Stratified Flow- Upward  Inclined Pipes 

Comparison of the Two-Fluid (TF, MTF) prediction with the exact (LPF) solution 

TF (free)- 

τi =0 for 

D
im

en
si

o
n

le
ss

 
TF (light/heavy)- 

τi based on the light/heavy phase   

Counter-current Co-current Up 

𝑈 1 ≈ 𝑈 2 



 The Modified TF (MTF) closures- exactly reproduce the solution in 

the Two-Plate (TP)  geometry, and in a good agreement with the 

exact solution in the pipe geometry for horizontal and inclined 

laminar stratified flows.  

 The MTF closures have been extended for turbulent flows, 

corrections for the effect  of the waves on the shear stresses and 

interfacial curvature were introduced (Ullmann & Brauner, IJMF, 2006).   

 Treating the complexity of the problem incrementally enables 

isolation of the effects of each of the factors and renders more 

robust closures. 

Some conclusions..  

When those models for stratified flow are relevant??  



Stratified Flow Existence Boundaries  
e.g., Flow Pattern Map for Air-Water Horizontal System 

Stability analysis is an essential tool for the prediction of systems 

parameters and conditions for which stratified flow is a stable flow pattern. 

Exact stability analysis for two-phase pipe flow is too complicated. 

Taitel & Dukler (1976) 

Plug/ Slug 
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Mechanisms of Wind Generated Waves 

• Kelvin-Helmholtz (KH) Instability (1871), 

inviscid fluids- waves grow when suction  

due to reduced pressure at the wave crest  

overcome the wave weight. 

The destabilizing force is in phase with the 

wave height. 

A major part of the two-phase flow literature dealt with gas-liquid systems,  

The destabilizing mechanisms were related to those responsible for wind-generated waves. 

Cw 

waves grow when the energy input by the wind 

is larger than the viscous dissipation in the 

waves.  

Wind-Wave interactions result in a destabilizing 

force that is in phase with the wave slope, 

which is essential for the energy transfer. 

2( ) /G G G wU C h x    s

s -“Sheltering  coefficient”   
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Application to Stratified Gas-Liquid Flow in Channels 

The classical  Kelvin-Helmholtz (KH) instability criterion for inviscid flow 

(Lamb, 1945) :  
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C=1 (Kordyban & Ranov, 1970), C=0.5  (Walis & Dobson, 1973) - Stratified/ Slug boundary 
 

               (Taitel &Dukler,1976) for Stratified/ non-stratified  boundary (1 )C h 

• Bernoulli type criterion- the gas suction acts on a “stationary” interfacial disturbance. 

• Liquid inertia (heavy phase) is ignored.  

• Weak dependence on viscosity (via ℎ  calculated by the Two-Fluid SS model).  



Flow Pattern Map: Air-Water Horizontal System 

Taitel & Dukler (1976) map , Experimental- Barnea et al. (1980), D=0.025 m 

KH mechanism,  

Stratified/non-Stratified  

Prediction the of the stratified flow boundary for a general two-phase system 

requires consideration of the inertia and viscous effects of both phases !   

Jefrreys’  ‘Sheltering’ model, 

 s=0.01 (s=0.27) 

Stratified Smooth/Stratified-Wavy  

(1 )C h 



Viscid K-H Stability Analysis  
Transient Two Fluid Model for Stratified Flow 
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e.g., Lin & Hanratty (1986), Andritsos et al., (1989), Barnea, (1991), 
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Stability of Two-Layer Plane Poiseuille Flow 
Two-Plates (TP) Geometry  

 

 

 

Destabilization Mechanisms:  

 

Shear flow instability- Interaction of the fluids’ flow with the channel walls. 

• Encountered also in single-phase Poiseuille flow (Tollmien-Schlichting waves). 

• Leads to transition to turbulent flow in either of the phases for sufficiently large Re. 

• Associated with short waves instability. 
 

Interfacial instability- Interaction between the fluids’ flow at the interface 

• Results from energy transfer from the main flow to interfacial disturbances. 

• Instability is attributed to viscosity and/or density stratification (jump). 

• Associated with (relatively) long waves instability. 

Follows the approach in the  classical work of  Yih (1967), k→0: 

Conclusion (e.g., Boomkamp & Miesen ,1996): All scheme for energy transfer to the waves,  

all related to viscous effects: “Including viscous effects, however small, into the stability 

problem rules out the possibility of the essentially inviscid K-H instability”   
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Kelvin-Helmholtz (K-H) mechanism???  



Stability of Two-Layer Plane Poiseuille Flow 

Barmak et al., Phys. Fluids (2016a,b)  

Objectives 

• Determine the range of flow parameters for which smooth-stratified 

flow can be stable, while considering all perturbations modes (all k).  

• Identify the most dangerous perturbation mode in various systems, 

horizontal and inclined, and where they are initiated in the flow.  

• Present the  results in the form of stability boundaries on flow pattern 

maps for the sake of further physical interpretations. 

• Identify systems & conditions where long waves are the most dangerous 

perturbation, for which exact analytical solution is available. 

• Examine the possibility of using the the Two-Fluid (TF) model  for  

reproducing the exact long-wave stability boundary, thereby identifying 

the closures needed  & the dominant destabilizing mechanism.  



Exact Analysis: Two-Layer Plane Poiseuille Flow: 
 2D transient laminar two-layer flow between Two-Plates (TP)  
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  j=1 (heavy), j=2 (light): 
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Boundary conditions: 

Channel walls - no-slip. Interface - continuity of the velocity components,  

balance of the stress components & kinematic condition.  
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Temporal Stability Analysis 
Governing differential system formulated as an eigenvalue problem    
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Orr-Sommerfeld equations- solved numerically by  the Chebyshev Collocation Spectral Method 
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Stable stratified flow corresponds to conditions for which disturbances of all k`s are damped 

Critical disturbance: the particular k which is responsible for triggering the instability 



Case Study- Horizontal air-water system, H=0.02m 

Stability map – Long waves, k→0 

 

qcr (g=0) 

U (g=0) 

Long wave (LW) –analytical asymptotic solution (Kushnir et al., IJMF, 2014) 

0-g NS boundary 



Horizontal air-water system : Stability map (all k’s) 

We→∞ (s0 



Horizontal air-water system : Stability map (all k’s) 

Surface tension included  



Horizontal air-water system: Stability map (all k’s) 
Effect of surface tension on the critical disturbance- shift  to lower k  



Horizontal air-water system 
Flow pattern transitions across stability boundary 

Experimental data D=2.54cm 

Barnea et al. (1980) 

Plug/ Slug

SW

SS

PS



Horizontal air-water system (all k’s) 
Single phase flow stability limits for Air and Water (shear instability) 

A 

B 

C 

D 

E 



Amplitude of the stream function perturbations (Eigenfunctions) 

     Along the neutral stability curve  (sample points) 

Short wave, k >1; Interfacial mode 

Velocity Profile of 

the base flow – U/ui 

Perturbation Stream 

Function Amplitude - f 

Long wave, k →0 

Shear mode 

A 

Long wave,  
k →0; 

Interfacial 

mode 

Short wave, k >1; 

Shear mode 

B 

C D E 



Down-scaling, H=0.002m 
 

Horizontal air-water system 

Channel size effect 

Up-scaling, H=0.2m 

 Critical U2s - Scaled by (Fr2 )crit (H< ≈2cm) 
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 Critical U2s - Scaled by (Re2)crit (H> ≈2cm) 

H=0.02m 

Air superficial velocity for SS/SW transition is maximal in H ≈0.024m,  ≈ 5.75m/s 

H (U2s)crit H (U2s)crit 



Stability in Inclined Flows 

Some case studies 



Upward inclined air-water flow – Stability map  
β=0.1°, H=0.02m 

Experimental data D=2.5cm, β=0.25° 

Barnea et al. (1980) 

Triple solution region 

Plug/ Slug 



Upward inclined air-water flow – Stability map  
In the Triple solution region 

The upper solution is always unstable! 

Bold curves – stable conditions 

Dashed curves – unstable  

Long-wave analysis (𝑘 → 0):  

middle solution is always stable. 

Upper solution is stable in part of the 3-s region. 



Upward inclined air-water flow 
Perturbed flow patterns at neutral stability 

A. Lower solution 

Long wave, k →0 

Shear mode 

Disturbance streamlines 

Perturbed flow streamlines 

Disturbance +main flow 

B. Middle solution 

Short wave, k =4.6 

Interfacial mode 



Downward inclined air-water flow Stability map 
=5o, H=0.02m 

Experimental data D=2.54 cm 

Barnea et al. (1982) 

Long wave, k →0 

is the critical mode 

Triple solution region, unstable! 

Long-wave analysis (𝑘 → 0) predicts multiple stable solutions in the triple solution region. 



There are systems and conditions where long waves are 

the most ‘dangerous’ mode for triggering instability.  

Can the Long Wave (LW) stability boundary be reproduced 

by the Two-Fluid Model ?  

Observation: 

Are the required closure relations available??  

Long waves is the underlying assumption of the TF model 



1 2 1hJ J J  

Two Fluid Model - Neutral stability condition 
                Kushnir et al., IJMF, (2017) 
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(“Sheltering” mechanism) 

Analytical 
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K1,2,i - The exact LW analytical solution was used to obtain the wave induced  interfacial  and 

wall shear stresses components in phase with the wave slope (Kushnir et al., 2014): 
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Modeling of the ‘Sheltering’ Term, Jh  Kushnir et al., IJMF, (2017) 

 

Ch-an apparent sheltering coefficient, combines the effects of Ki,K1,K2 
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Tabulated values  of   Ch (m, r, h̃),  

m>1 & m<1 Kushnir et al., IJMF (2017) 

Asymptotic Ch values 

m Ch 

1.01 0.00255 

1.07 0.01682 

1.5 0.08571 

2 0.12857 

5 0.20571 

20 0.24429 

55 0.25247 

5000 0.25709 

50000 0.25714 

500000 0.25714 
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        No asymptotic value for s ! 
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TF neutral stability curves Jh=0 (Ch=0)  

TF with Jh (Ch≠0)  ≡ Exact long wave neutral stability curve 

 
Concurrent downward flow 

 
Horizontal flow 
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Using the Sheltering term (with the closures for the Ch (or Ks’ ) obtained from the L-W analysis) 

 the TF model reproduces the exact L-W stability boundary  

The impact of Jh  on the L-W stability boundary 

 Air-water system, H=0.02m 
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Concurrent downward flow 

 
Horizontal flow 

The impact of Jh  on the L-W stability boundary 

 Air-water system, H=0.02m 

Long wave, k →0 is the critical mode 

all along the stability boundary 

Long wave, k →0 is the critical mode 

only in parts of  the stability boundary 

k →0 

k →0 
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Jh (‘Sheltering’) is dominant at low ULs 

 

JL  dominant  at low UGs - 

Liquid-dominated KH mechanism 

determines the critical ULs 

 

KH due to the Gas  inertia is negligible!    
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Conclusions 
 

 

 

• The exact solutions, although obtained for simple geometry, enable identifying the 

pertinent mechanisms, which are relevant also for the flow in realistic geometry (e.g., pipe 

flow), and are not represented in the commonly used two-fluid (TF) models.   

• Closure relations that enable the TF model reproducing the exact steady state solution, as 

well as the  exact Long Wave stability boundary for horizontal and inclined flows were 

identified.  

• The “Sheltering”  mechanism is important in triggering instability. Nevertheless, the 

contribution of the KH mechanism  cannot be ignored, and definitely should not ruled out. 

• Consideration of all wave number perturbations is essential for a correct prediction of 

the flow stability. Long wave stability analysis is generally insufficient- a severe limitation 

of TF models. 

• Multiple holdups in inclined flows-  the stability analysis indicates that more than one 

solution can be stable in the multiple solution regions of upward inclined and 

countercurrent flows.     
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